13,147 research outputs found

    A Theory of Factor Allocation and Plant Size

    Get PDF
    In this paper we develop a theory of how factors interact at the plant level. The theory has implications for: (1) the micro foundations for capital skill complementarity (2) the relationship between factor allocation and plant size and (3) the effects of trade and growth on the skill premium. The theory is consistent with certain facts about factor allocation and factor price changes in the 19th and 20th centuries.

    A theory of factor allocation and plant size

    Get PDF
    In this paper we develop a theory of how factors interact at the plant level. The theory has implications for (1) the micro foundations for capital-skill complementarity, (2) the relationship between factor allocation and plant size, and (3) the effects of trade and growth on the skill premium. The theory is consistent with certain facts about factor allocation and factor price changes in the 19th and 20th centuries.Human capital ; Labor supply

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed

    Threshold Analysis of Non-Binary Spatially-Coupled LDPC Codes with Windowed Decoding

    Full text link
    In this paper we study the iterative decoding threshold performance of non-binary spatially-coupled low-density parity-check (NB-SC-LDPC) code ensembles for both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (BIAWGNC), with particular emphasis on windowed decoding (WD). We consider both (2,4)-regular and (3,6)-regular NB-SC-LDPC code ensembles constructed using protographs and compute their thresholds using protograph versions of NB density evolution and NB extrinsic information transfer analysis. For these code ensembles, we show that WD of NB-SC-LDPC codes, which provides a significant decrease in latency and complexity compared to decoding across the entire parity-check matrix, results in a negligible decrease in the near-capacity performance for a sufficiently large window size W on both the BEC and the BIAWGNC. Also, we show that NB-SC-LDPC code ensembles exhibit gains in the WD threshold compared to the corresponding block code ensembles decoded across the entire parity-check matrix, and that the gains increase as the finite field size q increases. Moreover, from the viewpoint of decoding complexity, we see that (3,6)-regular NB-SC-LDPC codes are particularly attractive due to the fact that they achieve near-capacity thresholds even for small q and W.Comment: 6 pages, 8 figures; submitted to 2014 IEEE International Symposium on Information Theor

    Principles of Neuromorphic Photonics

    Full text link
    In an age overrun with information, the ability to process reams of data has become crucial. The demand for data will continue to grow as smart gadgets multiply and become increasingly integrated into our daily lives. Next-generation industries in artificial intelligence services and high-performance computing are so far supported by microelectronic platforms. These data-intensive enterprises rely on continual improvements in hardware. Their prospects are running up against a stark reality: conventional one-size-fits-all solutions offered by digital electronics can no longer satisfy this need, as Moore's law (exponential hardware scaling), interconnection density, and the von Neumann architecture reach their limits. With its superior speed and reconfigurability, analog photonics can provide some relief to these problems; however, complex applications of analog photonics have remained largely unexplored due to the absence of a robust photonic integration industry. Recently, the landscape for commercially-manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. The scientific community has set out to build bridges between the domains of photonic device physics and neural networks, giving rise to the field of \emph{neuromorphic photonics}. This article reviews the recent progress in integrated neuromorphic photonics. We provide an overview of neuromorphic computing, discuss the associated technology (microelectronic and photonic) platforms and compare their metric performance. We discuss photonic neural network approaches and challenges for integrated neuromorphic photonic processors while providing an in-depth description of photonic neurons and a candidate interconnection architecture. We conclude with a future outlook of neuro-inspired photonic processing.Comment: 28 pages, 19 figure

    Planar Airy beam light-sheet for two-photon microscopy

    Get PDF
    We demonstrate the first planar Airy light-sheet microscope. Fluorescence light-sheet microscopy has become the method of choice to study large biological samples with cellular or sub-cellular resolution. The propagation-invariant Airy beam enables a ten-fold increase in field-of-view with single-photon excitation; however, the characteristic asymmetry of the light-sheet limits its potential for multi-photon excitation. Here we show how a planar light-sheet can be formed from the curved propagation-invariant Airy beam. The resulting symmetric light sheet excites two-photon fluorescence uniformly across an extended field-of-view without the need for deconvolution. We demonstrate the method for rapid two-photon imaging of large volumes of neuronal tissue.Comment: 7 pages, 4 figure

    Shock temperatures of SiO_2 and their geophysical implications

    Get PDF
    The temperature of SiO_2 in high-pressure shock states has been measured for samples of single-crystal α-quartz and fused quartz. Pressures between 60 and 140 GPa have been studied using projectile impact and optical pyrometry techniques at Lawrence Livermore National Laboratory. Both data sets indicate the occurrence of a shock-induced phase transformation at ∼70 and ∼50 GPa along the α- and fused quartz Hugoniots, respectively. The suggested identification of this transformation is the melting of shock-synthesized stishovite, with the onset of melting delayed by metastable superheating of the crystalline phase. Some evidence for this transition in conventional shock wave equation of state data is given, and when these data are combined with the shock temperature data, it is possible to construct the stishovite-liquid phase boundaries. The melting temperature of stishovite near 70 GPa pressure is found to be 4500 K, and melting in this vicinity is accompanied by a relative volume change and latent heat of fusion of ∼2.7% and ∼2.4 MJ/kg, respectively. The solid stishovite Hugoniot centered on α-quartz is well described by the linear shock velocity-particle velocity relation, u_s = 1.822 up + 1.370 km/s, while at pressures above the melting transition, the Hugoniot centered on α-quartz has been fit with u_s = 1.619 u_p + 2.049 km/s up to a pressure of ∼200 GPa. The melting temperature of stishovite near 100 GPa suggests an approximate limit of 3500 K for the melting temperature of SiO_2-bearing solid mantle mineral assemblages, all of which are believed to contain Si^(4+) in octahedral coordination with O^(2−). Thus 3500 K is proposed as an approximate upper limit to the melting point and the actual temperature in the earth's mantle. Moreover, the increase of the melting point of stishovite with pressure at 70 GPa is inferred to be ∼11 K/GPa. Using various adiabatic temperature gradients in the earth's mantle and assuming creep is diffusion controlled in the lower mantle, the current results could preclude an increase of viscosity by more than a factor of 10^3 with depth across the mantle

    Shock temperatures in anorthite glass

    Get PDF
    Temperatures of CaAl_2Si_2O_8 (anorthite glass) shocked to pressures between 48 and 117 GPa have been measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high-pressure phase. Either a variable specific heat, or the existence of three phase transitions, at pressures of about 55, 85 and 100 GPa and with transition energies of about 0.5 MJ kg^(−1) each (≈ 1.5 MJ kg^(−1) total) can explain the shock-temperature data. The proposed phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yield good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases. Observed time dependences were used to calculate absorption coefficients of the shocked material of from about 2 mm^(−1) to greater than 24 mm^(−1) — an increasing function of shock pressure. The assumption that the shocked material radiates as a black body is supported by the theoretical model, and by the close agreement between measured and calculated black body spectral radiance as a function of wavelength
    • …
    corecore